Email: florian.faucher [at] univie.ac.at

** The full CV in pdf format can be downloaded
here. **

Faculty of Mathematics

University of Vienna

Oskar-Morgenstern-Platz 1

1090 Wien, Austria.

I am an applied mathematician at the Faculty of Mathematics at
the University of Vienna.
My research is centered on inverse wave problems for imaging,
where the objective is to recover the physical properties of
a medium from obesrvations of waves propagation.
My research has an emphasis on seismic imaging,
medical imaging, and helioseismology.
I develop and maintain the dedicated software
`hawen`

used for large-scale applications for
(1) the modeling of wave propagation phenomena in different
contexts (e.g. viscoelastic media)
and
(2) the reconstruction of physical properties from wave
observations.

- time-harmonic inverse wave problem
- convergence and stability estimates,
- geophysics,

- helioseismology,
- hybridizable discontinuous Galerkin methods,
- high-performance computing.

2019-2021

2018-2019

2014-2017

2012-2014

2010-2011

**Lise Meitner fellowship**, funded by Austrian Science Fund (FWF),
Faculty of Mathematics, University of Vienna, Austria.

**Research Engineer**, Inria Project-Team Magique 3D, Pau, France.

**PhD student**, Inria Project-Team Magique 3D, Université de Pau, France.

**Visiting Scholar**, Geo-Mathematics and Imaging Group, Purdue University, West Lafayette, IN, USA
(now at Rice University, Houston, TX, USA).

**Software engineer**, Eurogiciel Ingénierie, Toulouse, France.

2014-2017

2005-2010

**Ph.D. in Applied Mathematics**, Inria Bordeaux Sud-Ouest, Univeristé de Pau, France.

*Contributions to Seismic Full Waveform Inversion for Time Harmonic Wave
Equations: Stability Estimates, Convergence Analysis, Numerical Experiments
involving Large Scale Optimization Algorithms.*

**Master’s degree in applied mathematics**, INSA Toulouse, France.

` hawen `

**time-HArmonic Wave modEling and INversion using Hybridizable Discontinuous Galerkin
Discretization**

open-source software that I develop from scratch and maintain.
It combines `mpi`

and `OpenMP`

parallelism and
to solve time-harmonic forward and inverse wave problems in 1, 2 and 3 dimensions,
for large-scale imaging and helioseismology.

• Dedicated website, with documentation and tutorials: https://ffaucher.gitlab.io/hawen-website.

• Source code: https://gitlab.com/ffaucher/hawen.

** The CV in pdf format
contains more details including proceedings and the partitipation
to conferences.**

- F. Faucher, M. V. de Hoop and O. Scherzer.
*Reciprocity-gap misfit functional for Distributed Acoustic Sensing, combining teleseismic and exploration data*,*arXiv preprint arXiv:2004.04580*, 2020. - F. Faucher and O. Scherzer.
*Adjoint-state method for Hybridizable Discontinuous Galerkin discretization: application to the inverse acoustic wave problem*,*arXiv preprint arXiv:2002.06366*, 2020. - H. Barucq, F. Faucher, D. Fournier, L. Gizon and H. Pham.
*Efficient computation of the modal outgoing Green's kernel for the scalar wave equation in helioseismology*,*[Research Report] RR-9338*, Inria Bordeaux Sud-Ouest pp. 1--84, 2020. - H. Barucq, F. Faucher, D. Fournier, L. Gizon and H. Pham.
*On the outgoing solutions and radiation boundary conditions for the vectorial wave equation with ideal atmosphere in helioseismology*,*[Research Report] RR-9335*, Inria Bordeaux Sud-Ouest, pp. 1--118, 2020. - F. Faucher, G. Alessandrini, H. Barucq, M. V. de Hoop, R. Gaburro and E. Sincich.
*Full Reciprocity-Gap Waveform Inversion in the frequency domain, enabling sparse-source acquisition*,*arXiv preprint arXiv:1907.09163*, 2019.

- F. Faucher, G. Chavent, H. Barucq and H. Calandra.
*A priori estimates of attraction basins for velocity model reconstruction by time-harmonic Full Waveform Inversion and Data Space Reflectivity formulation*,*Geophysics*, 2020, 85 (3), R223-R241.

**Remark**: 55 pages extended research report. - H. Barucq, F. Faucher and H. Pham.
*Outgoing solutions and radiation boundary conditions for the ideal atmospheric scalar wave equation in helioseismology*.*ESAIM: M2AN, Mathematical Modelling and Numerical Analysis*, 2020, 54 (4), p.1111--1138.

**Remark**: 130 pages extended research report. - F. Faucher, O. Scherzer and H. Barucq.
*Eigenvector models for solving the seismic inverse problem for the Helmholtz equation*,*Geophysical Journal International*, 2020, 221 (1), p.394--414.

**Remark**: 47 pages extended Arxiv preprint arXiv:1903.08991.

- H. Barucq, G. Chavent and F. Faucher.
*A priori estimates of attraction basins for nonlinear least squares, with application to Helmholtz seismic inverse problem*,*Inverse Problems*, 2019, 35 (11), 115004. - G. Alessandrini, M. V. de Hoop, F. Faucher, R. Gaburro and E. Sincich.
*Inverse problem for the Helmholtz equation with Cauchy data: reconstruction with conditional well-posedness driven iterative regularization*,*ESAIM: M2AN, Mathematical Modelling and Numerical Analysis*, 2019, 53, pp. 1005–1030.

- H. Barucq, F. Faucher and H. Pham..
*Localization of small obstacles from back-scattered data at limited incident angles with full-waveform inversion*,*Journal of Computational Physics*, 2018, 370, pp.1-24.

**Remark**: 78 pages extended research report.

- F. Faucher
*Contributions to Seismic Full Waveform Inversion for Time-Harmonic Wave Equations: Stability Estimates, Convergence Analysis, Numerical Experiments involving Large Scale Optimization Algorithms*,*Doctoral thesis*, Inria Bordeaux Sud-Ouest, Université de Pau et des Pays de l’Adour, 400 pages, 2017.

- E. Beretta, M. V. de Hoop, F. Faucher and O. Scherzer.
*Inverse Boundary Value Problem For The Helmholtz Equation: Quantitative Conditional Lipschitz Stability Estimates*,*SIAM Journal on Mathematical Analysis*, 2016, Society for Industrial and Applied Mathematics, 48 (6), pp. 3962--3983. - H. Calandra, M. V. de Hoop, F. Faucher and J. Shi.
*Elastic full-waveform inversion with surface and body waves*,*SEG Technical Program Expanded Abstracts*, 2016, SEG International Exposition and 86th Annual Meeting, pp. 1120--1124.

Bootstrap 4.3.1

jQuery 3.4.1