Florian Faucher
Project-team Makutu, Inria
Bordeaux, Université de Pau
et des Pays de l'Adour.
florian.faucher [at] inria.fr
CV.pdf
ORCID logo   0000-0003-4958-7511
Gscholar   GoogleScholar
hal   HAL

gitlab   Gitlab project hawen
gitlab   hawen website

I am a researcher in applied mathematics in the Inria project-team Makutu, at the University of Pau et des Pays de l'Adour. My research is centered on inverse wave problems, with an emphasis on time-harmonic wave equations, seismic imaging, and helioseismology. I develop and maintain the open-source parallel software hawen for nonlinear inversions.


    Ongoing Projects


  • ERC Starting-Grant INCORWAVE (2025--2029): Nonlinear inversion of correlation waveforms with hierarchical reconstructions. European project focusing on passive imaging in terrestrial and extra-terrestrial inverse problems. https://ffaucher.gitlab.io/erc-incorwave/
  • ANR-DFG Project BUTTERFLY (2024--2027): computation of stellar butterfly diagram; joint project with the University of Göttingen. The project is co-funded by the French ANR and the German DFG.


    Open-source Software Hawen


hawen: time-HArmonic Wave modEling and INversion using Hybridizable Discontinuous Galerkin Discretization Open-source software that combines mpi and OpenMP parallelism to solve time-harmonic forward and inverse wave problems.
Website, with documentation and tutorials: https://ffaucher.gitlab.io/hawen-website.
Source code: https://gitlab.com/ffaucher/hawen.
Reference: F. Faucher, hawen: time-harmonic wave modeling and inversion using hybridizable discontinuous Galerkin discretization , Journal of Open Source Software, 6 (57), 2021.

    Applications


Large-scale modeling

Inverse wave problems

Helioseismology

wave propagation
inverse problems
helioseismology

    List of publications


/

    List of talks


/



Florian Faucher
Project-team Makutu, Inria
Bordeaux, Université de Pau
et des Pays de l'Adour.
florian.faucher [at] inria.fr
CV.pdf
ORCID logo   0000-0003-4958-7511
Gscholar   GoogleScholar
hal   HAL

gitlab   Gitlab project hawen
gitlab   hawen website

    Publications


Preprints and Scientific Reports
Journal Articles
  1. H. Pham, F. Faucher, and H. Barucq. Numerical investigation of stabilization in the Hybridizable Discontinuous Galerkin method for linear anisotropic elastic equation, Computer Methods in Applied Mechanics and Engineering , 428 (1), pp. 1--23, 2024. arXiv preprint, extended research report.
  2. J. A. Lara Benitez, T. Furuya, F. Faucher, A. Kratsios, X. Tricoche and M. V. de Hoop. Out-of-distributional risk bounds for neural operators with applications to the Helmholtz equation, Journal of Computational Physics, 513 (1), 113168, pp. 1--59, 2024, arXiv preprint.
  3. T. Liu, J. A. Lara Benitez, F. Faucher, A. Khorashadizadeh, M. V. de Hoop, and I. Dokmanic. WaveBench: Benchmarks Datasets for Modeling Linear Wave Propagation PDEs , Transactions on Machine Learning Research, 2835--8856, 2024, GitHub code, Zenodo repository.
  4. M. Deheuvels, F. Faucher, and D. Brito. Numerical and experimental study of ultrasonic seismic waves propagation and attenuation on high quality factor samples , Geophysical Prospecting, 2023.
  5. F. Faucher and O. Scherzer. Synthetic dataset for visco-acoustic imaging , Data in Brief, 48 (1), Elsevier, 2023.
  6. F. Faucher, C. Kirisits, M. Quellmalz, O. Scherzer, E. Setterqvist. Diffraction Tomography, Fourier Reconstruction, and Full Waveform Inversion , in:   Handbook of Mathematical Models and Algorithms in Computer Vision and Imaging, Springer International Publishing, 2023 (preprint version).
  7. F. Faucher and O. Scherzer. Quantitative inverse problem in visco-acoustic media under attenuation model uncertainty , Journal of Computational Physics, 470 (1), 2022.
  8. H. Barucq, F. Faucher, D. Fournier, L. Gizon and H. Pham. Outgoing modal solutions for Galbrun's equation in helioseismology , Journal of Differential Equations, 286, 2021.
    Remark: 118 pages extended research report.
  9. F. Faucher. hawen: time-harmonic wave modeling and inversion using hybridizable discontinuous Galerkin discretization , Journal of Open Source Software, 6 (57), 2021.
  10. F. Faucher, M. V. de Hoop and O. Scherzer. Reciprocity-gap misfit functional for Distributed Acoustic Sensing, combining data from active and passive sources , Geophysics, 86 (2), 2020.
  11. F. Faucher and O. Scherzer. Adjoint-state method for Hybridizable Discontinuous Galerkin discretization: application to the inverse acoustic wave problem, Computer methods in applied mechanics and engineering, 372 (2), 2020.
  12. H. Barucq, F. Faucher, D. Fournier, L. Gizon and H. Pham. Efficient and accurate algorithm for the full modal Green's kernel of the scalar wave equation in helioseismology, SIAM Journal on Applied Mathematics, 80 (1), pp. 2657–2683, 2020.
    Remark: 84 pages extended research report.
  13. F. Faucher, G. Alessandrini, H. Barucq, M. V. de Hoop, R. Gaburro and E. Sincich. Full Reciprocity-Gap Waveform Inversion, enabling sparse-source acquisition, Geophysics, 85 (6), 2020. (preprint version).
  14. F. Faucher, G. Chavent, H. Barucq and H. Calandra. A priori estimates of attraction basins for velocity model reconstruction by time-harmonic Full Waveform Inversion and Data Space Reflectivity formulation, Geophysics, 2020, 85 (3), R223-R241.
    Remark: 55 pages extended research report.
  15. H. Barucq, F. Faucher and H. Pham. Outgoing solutions and radiation boundary conditions for the ideal atmospheric scalar wave equation in helioseismology. ESAIM: M2AN, Mathematical Modelling and Numerical Analysis, 2020, 54 (4), p.1111--1138.
    Remark: 130 pages extended research report.
  16. F. Faucher, O. Scherzer and H. Barucq. Eigenvector models for solving the seismic inverse problem for the Helmholtz equation, Geophysical Journal International, 2020, 221 (1), p.394--414.
    Remark: 47 pages extended Arxiv preprint arXiv:1903.08991.
  17. H. Barucq, G. Chavent and F. Faucher. A priori estimates of attraction basins for nonlinear least squares, with application to Helmholtz seismic inverse problem, Inverse Problems, 2019, 35 (11), 115004.
  18. G. Alessandrini, M. V. de Hoop, F. Faucher, R. Gaburro and E. Sincich. Inverse problem for the Helmholtz equation with Cauchy data: reconstruction with conditional well-posedness driven iterative regularization, ESAIM: M2AN, Mathematical Modelling and Numerical Analysis, 2019, 53, pp. 1005–1030.
  19. H. Barucq, F. Faucher and H. Pham.. Localization of small obstacles from back-scattered data at limited incident angles with full-waveform inversion, Journal of Computational Physics, 2018, 370, pp.1-24.
    Remark: 78 pages extended research report.
  20. F. Faucher Contributions to Seismic Full Waveform Inversion for Time-Harmonic Wave Equations: Stability Estimates, Convergence Analysis, Numerical Experiments involving Large Scale Optimization Algorithms, Doctoral thesis, Inria Bordeaux Sud-Ouest, Université de Pau et des Pays de l’Adour, 400 pages, 2017.
  21. E. Beretta, M. V. de Hoop, F. Faucher and O. Scherzer. Inverse Boundary Value Problem For The Helmholtz Equation: Quantitative Conditional Lipschitz Stability Estimates, SIAM Journal on Mathematical Analysis, 2016, Society for Industrial and Applied Mathematics, 48 (6), pp. 3962--3983.
  22. J. Shi, M. V. de Hoop, F. Faucher and H. Calandra. Elastic full-waveform inversion with surface and body waves, SEG Technical Program Expanded Abstracts, 2016, SEG International Exposition and 86th Annual Meeting, pp. 1120--1124.